skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shaffer, Nathaniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Warm dense matter is a material state in the region of parameter space connecting condensed matter to classical plasma physics. In this intermediate regime, we investigate the significance of non-adiabatic electron-ion interactions upon ion dynamics. To disentangle non-adiabatic from adiabatic electron-ion interactions, we compare the ion self-diffusion coefficient from the non-adiabatic electron force field computational model with an adiabatic, classical molecular dynamics simulation. A classical pair potential developed through a force-matching algorithm ensures the only difference between the models is due to the electronic inertia. We implement this new method to characterize non-adiabatic effects on the self-diffusion of warm dense hydrogen over a wide range of temperatures and densities. Ultimately we show that the impact of non-adiabatic effects is negligible for equilibrium ion dynamics in warm dense hydrogen. This article is part of the theme issue ‘Dynamic and transient processes in warm dense matter’. 
    more » « less
  2. Abstract Spectroscopic measurements of dense plasmas at billions of atmospheres provide tests to our fundamental understanding of how matter behaves at extreme conditions. Developing reliable atomic physics models at these conditions, benchmarked by experimental data, is crucial to an improved understanding of radiation transport in both stars and inertial fusion targets. However, detailed spectroscopic measurements at these conditions are rare, and traditional collisional-radiative equilibrium models, based on isolated-atom calculations and ad hoc continuum lowering models, have proved questionable at and beyond solid density. Here we report time-integrated and time-resolved x-ray spectroscopy measurements at several billion atmospheres using laser-driven implosions of Cu-doped targets. We use the imploding shell and its hot core at stagnation to probe the spectral changes of Cu-doped witness layer. These measurements indicate the necessity and viability of modeling dense plasmas with self-consistent methods like density-functional theory, which impact the accuracy of radiation transport simulations used to describe stellar evolution and the design of inertial fusion targets. 
    more » « less
  3. We report the results of the second charged-particle transport coefficient code comparison workshop, which was held in Livermore, California on 24–27 July 2023. This workshop gathered theoretical, computational, and experimental scientists to assess the state of computational and experimental techniques for understanding charged-particle transport coefficients relevant to high-energy-density plasma science. Data for electronic and ionic transport coefficients, namely, the direct current electrical conductivity, electron thermal conductivity, ion shear viscosity, and ion thermal conductivity were computed and compared for multiple plasma conditions. Additional comparisons were carried out for electron–ion properties such as the electron–ion equilibration time and alpha particle stopping power. Overall, 39 participants submitted calculated results from 18 independent approaches, spanning methods from parameterized semi-empirical models to time-dependent density functional theory. In the cases studied here, we find significant differences—several orders of magnitude—between approaches, particularly at lower temperatures, and smaller differences—roughly a factor of five—among first-principles models. We investigate the origins of these differences through comparisons of underlying predictions of ionic and electronic structure. The results of this workshop help to identify plasma conditions where computationally inexpensive approaches are accurate, where computationally expensive models are required, and where experimental measurements will have high impact. 
    more » « less